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Summary: A novel strategy, featuring an intramolecular 
imino Diels-Alder reaction, for the construction of the 
pentacyclic framework of eburnamonine is detailed. 

The pentacyclic skeleton common to the indole alkaloid 
eburnamonine (1) and related natural products has 
received considerable attention over the years. Since 

Alder r e a ~ t i o n , ~ , ~  we have developed a fundamentally 
different approach to the construction of the pentacyclic 
skeleton of eburnamonine (1) which is based on an 
intramolecular [4 + 21 cycloaddition of vinyl indole imine 
2 (eq 1h6 This strategy has been successfully applied to 
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Wenkert's synthesis of racemic eburnamonine in 1965,2 
which established that the D-E ring fusion was cis, 
numerous total and formal syntheses of 1 have appeared 
in the l i t e r a t~ re .~  With few except i~ns,~~J the vast 
majority of the published syntheses construct the C(2), 
C(3) carbon carbon bond via either a Pictet-Spengler or 
a Bischler-Napieralski cyclization. As a consequence, 
the majority of the syntheses of 1 have also led to the 
formation of epi-eburnamonine which possesses the trans 
ring fusion. In conjunction with our continuing interest 
in immonium ions as heterodienophiles for the Diels- 

a synthesis of racemic 1. 
Our plan for the elaboration of the imine functionality 

in vinyl indole imine 2 centered around the unmasking 
of a protected /?-amino cyclopropanecarboxamide (cf. 
4)with concomitant opening of the cyclopropane leading 
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directly to 2. The synthesis of the TEOC-protected 
p-amino cyclopropanecarboxyamide 4 commences with 
comlpercially available 6-valerolactam. Treatment of a 
0.43 M solution of 6-valerolactam in anhydrous tetrahy- 
drofuran with 2.0 equiv of n-butyllithium at 0 "C followed 
by sequential addition of ethyl iodide and /?-(trimethyl- 
si1yl)ethyl 4-nitrophenyl carbonate' affords the TEOC- 
protected lactam 6 in 69% yield. Selective reduction of 
the amide carbonyl with lithium tri-tert-butoxyaluminum 
hydride at -50 "C followed by exposure to ethereal 
sulfuric acid provides eneamide 6 directly in 92% overall 
yield. Addition of ethyl diazoacetate to a suspension of 
copper bronze in neat eneamide 6 at  135 "C generates a 
separable mixture of the exo and endo cyclopropane 
esters 7 (R = Et) and 8 (R = Et) in 33% and 31% yield, 
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respectively.8 Interestingly, treatment of a solution of 
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ester 8 (R = Et) in methylene chloride with 0.15 equiv of 
boron trifluoride etherate at 0 "C gives rise to an 84% 
isolated yield of 7 (R = Et) along with an 8% recovery of 
8 (R = Et). The facile Lewis acid catalyzed transforma- 
tion of 8 (R = Et) into 7 presumably occurs via the 
corresponding ketene immonium salt. Saponification of 
ester 7 (R = Et) gave rise to the corresponding acid in 
near quantitative yield. 

The coupling of indole-3-carboxyaldehyde with car- 
boxylic acid 7 (R = H) was best carried out by employing 
the activated p-nitrophenyl ester 7 (R = p-NOzC&-), 
which was available in 86% yield from acid 7 (R = H) 
via a dicyclohexylcarbodimide facilitated esterification. 
Treatment of activated ester 7 (R = p-NO&H4-) with 
1.2 equiv of N-lithioindole-3-carboxaldehyde at -20 "C 
provides the coupled amide 9 in 77% yield. The desired 
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vinyl indole 4 was available from aldehyde 9 in 86% yield 
by treatment of a solution of 9 in tetrahydrofuran with 
triphenylphosphonium methylide at  low temperature. 
The vinyl indole 4 proved to be quite sensitive at  ambient 
temperature and was stored in solution at -78 "C. 

In order to test our E4 + 21 cycloaddition strategy (eq 
1) for the construction of the pentacyclic skeleton of 
eburnamonine, cleavage of the TEOC protecting group 
of 4 with subsequent opening of the cyclopropane was 

(8) For an alternate synthesis of eburnamonine employing a cyclo- 
propanated tetrahydropyridine, see 3t. 

examined. The choice of fluoride source for cleavage of 
the (trimethylsily1)ethyl carbamate proved critical. Use 
of tetra-n-butylammonium fluoride provided none of the 
desired imine 2. However cesium fluoride in anhydrous 
dimethylformamide afforded imine 2 in 68%. Best 
results were obtained with benzyltrimethylammonium 
fluoride (BTAFY in the presence of crushed 4A molecular 
sieves. Addition of a solution of carbamate 4 in tetrahy- 
drofuran to a suspension of BTAF-sieves in tetrahydro- 
furan gives rise after 8 h a t  45 "C to an 81% yield of the 
sensitive imine 2. 

Having established a viable route to vinyl indole imine 
2, efforts were focused on the key cycloaddition process. 
Heating a solution of 2 in o-dichlorobenzene at  180 "C 
for 22 h provides cycloadduct 31° as a crystalline com- 
pound, mp 119.0-120.5 "C, in 32% yield. No trace of 
eburnamonine could be detected. When 2 was exposed 
(3 h) to 1.1 equiv of trifluoroacetic acid in benzene at  
reflux, cycloadduct 3 was isolated in 70% yield along with 
5% of eburnamonine l.ll In an attempt to promote both 
the cycloaddition and the subsequent olefin isomeriza- 
tion, a 0.01 M solution of substrate 2 in 5.0 M lithium 
perchlorate-diethyl ether was treated with 10 mol % of 
camphorsulfonic acid.12 No trace of eburnamonine was 
detected; however, a 96% yield of 3 was isolated. The 
isomerization of 3 into eburnamonine was carried out (12 
h) at reflux in ethanolic sulfuric acid, providing crystal- 
line 1, mp 199.5-200.5 "C (lit.2 mp 200-202 "C), in 80% 
yield. 
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